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FOURIER ANALYSIS OF PERIODIC STENCILS IN MULTIGRID
METHODS∗

M. BOLTEN† AND H. RITTICH†

Abstract. Many applications require the numerical solution of a partial differential equation
(PDE), leading to large and sparse linear systems. Often a multigrid method can solve these systems
efficiently. To adapt a multigrid method to a given problem, local Fourier analysis (LFA) can be used.
It provides quantitative predictions about the behavior of the components of a multigrid method.
In this paper we generalize LFA to handle what we call periodic stencils. An operator given by a
periodic stencil has a block Fourier symbol representation. It gives a way to compute the spectral
radius and norm of the operator. Furthermore block Fourier symbols can be used to find out how
an operator acts on smooth/oscillatory input and whether its output will be smooth/oscillatory.
This information can then be used to construct efficient smoothers and coarse grid corrections. We
consider a particular PDE with jumping coefficients and show that it leads to a periodic stencil. LFA
shows that the Jacobi method is a suitable smoother for this problem and an operator dependent
interpolation is better than linear interpolation, as suggested by numerical experiments described in
the literature. If an operator is given by an ordinary stencil, then block smoothers yield periodic
stencils if the blocks correspond to rectangles in the domain. LFA shows that the block Jacobi and
the red-black block Jacobi method efficiently reduce more frequencies than their pointwise versions.
Further, it yields that a block smoother used in combination with aggressive coarsening can to some
degree compensate for the reduced convergence rate caused by aggressive coarsening.
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1. Introduction. Local Fourier analysis (LFA) provides quantitative insight
into the behavior of multigrid methods. In this paper we introduce the notion of
periodic stencils and their Fourier analysis. We use this to analyze multigrid solvers
for partial differential equations (PDEs) with jumping coefficients and block smoothers
in combination with aggressive coarsening.

Multigrid methods [25, 7, 13, 5] often are an important ingredient in the efficient
numerical solution of PDEs. In most cases the solution process involves the solution
of a large sparse linear system. Multigrid methods solve these systems iteratively
by combining a smoothing process that is accelerated by a hierarchy of coarse grids.
However, multigrid methods need to be adapted to the application, which makes a
quantitative analysis beneficial.

LFA was introduced in [3] to analyze smoothing processes. It was later extended
in [24] and [4] to analyze all multigrid components. For an introduction to LFA see
[25, 26].

Through the last decades LFA has been further generalized. A three-grid anal-
ysis was proposed in [27] which gives further insight into the behavior of multigrid

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section May 5,
2016; accepted for publication (in revised form) January 5, 2018; published electronically June 5,
2018.

http://www.siam.org/journals/sisc/40-3/M107395.html
Funding: This work was partly supported by the German Research Foundation (DFG) through

Priority Programme 1648, “Software for Exascale Computing” (SPPEXA).
†Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany (bolten@math.

uni-wuppertal.de, rittich@math.uni-wuppertal.de).

A1642

http://www.siam.org/journals/sisc/40-3/M107395.html
mailto:bolten@math.uni-wuppertal.de
mailto:bolten@math.uni-wuppertal.de
mailto:rittich@math.uni-wuppertal.de


FOURIER ANALYSIS OF PERIODIC STENCILS IN MULTIGRID A1643

methods. Two- and multicolor relaxations have been analyzed in [24, 29, 18, 19].
Aggressive coarsening has been considered with pointwise [26, 2, 11] and polynomial
smoothers [6]. A Fourier analysis for triangular grids has been presented in [10].
Furthermore, overlapping smoothers [20] and multigrid methods for discontinuous
Galerkin discretizations [14, 15, 16] have been investigated with the help of LFA.
Recently, a framework has been introduced that couples LFA with algebraic com-
putations [9] to enable the analysis of further problems, e.g., the parabolic diffusion
equation. To do so, the dimensions that pose problems to the analysis, e.g., due to
the nonnormality of the operator applied in this direction, are excluded from the LFA
and treated separately.

In this paper we introduce the analysis of periodic stencil operators. This gives
a general framework for carrying out LFAs for more complex problems. We provide
two applications of this framework.

PDEs with jumping coefficients appear in many applications, for example, when
analyzing diffusion processes in inhomogenous media. In these applications the coef-
ficients are often not continuous and vary by several orders of magnitude. We analyze
the multigrid method for these problems that was described in [1].

Aggressive coarsening gets interesting when multigrid methods run in parallel
environments. If a grid is very coarse the work performed on this grid per iteration is
relatively low. This leads to little work per core or even idle processors and the cost of
communication in comparison to computation becomes dominant, in the end leading
to a bad utilization of the hardware. This is especially a problem on modern super
computers with millions of cores [23]. Aggressive coarsening creates fewer coarse grids
such that more time is spent on finer grids. However, the convergence rate is increased.
We show that this can partially be compensated by the use of block smoothers. In
contrast to already existing analysis we choose our blocks to correspond to rectangles
in the domain, instead of lines or planes [29, 25, 26].

This paper is structured as follows. We provide a short review of LFA in section 2.
In section 3 a high-level view on LFA for periodic stencils is presented. Section 4 dis-
cusses the interpretation of block symbols. Then we apply these results to a multigrid
solver for a PDE with jumping coefficients and a multigrid solver using aggressive
coarsening and block smoothers in section 5. After that, in section 6 we fill in the de-
tails from section 3. The appendix contains a proof of the computation of the spectral
radius and norm of a matrix multiplication operator by using the essential supremum
of pointwise values. In the remainder of this section we introduce some notation that
will be used throughout the paper.

In the following we denote the dimensionality by d. A d-dimensional vector in Rd
will be denoted in bold letters. Most of the time they will be used as (multi-)indices.
Let a,b ∈ Rd. We denote the pointwise multiplication of two vectors by · and the
pointwise division by /, i.e.,

a · b := (a`b`)
d
`=1 and a/b := (a`/b`)

d
`=1 .

Whenever we compare vectors it is to be understood componentwise as well, i.e.,

a ≤ b ⇐⇒ (a` ≤ b` for all ` = 1, . . . , d) .

We define
b∑

j=a

uj :=

b1∑
j1=a1

b2∑
j2=a2

· · ·
bd∑

jd=ad

u(j1,j2,...,jd)T
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and

(uj)
b
j=a :=

(
· · ·
((
u(j1,j2,...,jd)T

)b1
j1=a1

)b2
j2=a2

· · ·
)bd
jd=ad

.

Furthermore, let 1 := (1)d`=1 be the vector whose entries are all one, and let vola :=∏d
j=1 aj be the volume of the hypercube with side lengths a1, . . . , ad. The index set

of n ∈ Nd is given by

In := {1, 2, . . . , n1} × · · · × {1, 2, . . . , nd} .

We denote the euclidean scalar product and norm by

〈a, b〉 :=

d∑
k=1

bkak and ‖a‖ := 〈a, a〉1/2 ,

respectively. For f, g ∈ L2(K) with K ⊆ Rd we have

〈f, g〉 :=

∫
K

g(x)f(x) dx and ‖f‖ := 〈f, f〉1/2 .

Furthermore we define

δkj(ϑ) := δkj :=

{
1 if k = j,

0 otherwise.

2. Elements of LFA. LFA is an idealized analysis. That means we analyze a
problem that is similar to the original one but easier to analyze. For LFA we usually
make two simplifying assumptions.

The first simplification is the neglect of the boundary conditions of the PDE in
its discretization. This is done by assuming that we consider (bounded) functions on
infinite grids and linear (bounded) operators that act on these functions. For example,
in multigrid methods this can be a discrete differential operator or the error operator
of a smoother that has been extended to an infinite grid. We have that every such
operator can be represented by a stencil.

More precisely, the infinite grid with step size h ∈ Rd is

Ωh :=
{
h · k : k ∈ Zd

}
.

For functions f, g : Ωh → C we have with

〈f, g〉 :=
∑
x∈Ωh

g(x)f(x) and ‖f‖ := 〈f, f〉1/2

a scalar product and a norm, respectively. The set of all (bounded) functions on the
grid Ωh is

Gh := {f : Ωh → C : ‖f‖ <∞} .
Definition and Lemma 2.1. For A ∈ L(Gh;Gh), i.e., A : Gh → Gh is a linear,

bounded operator, there exists a family {sx}x∈Ωh
, sx ∈ Gh, such that(

Au
)
(x) =

∑
y∈Ωh

sx(y) · u(x + y) .

We call {sx}x∈Ωh
the stencil of A.
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The second simplification is to assume that the operator is given by a constant
stencil, i.e.,

s = sx for all x ∈ Ωh

for some s ∈ Gh. This is helpful, because using the discrete time Fourier transform
(DTFT) a constant stencil operator can be represented by a symbol. This symbol will
give us some insight into the operator.

To explain this we first need the definition of the DTFT. Let

Θh := [0, 2π/h1)× · · · × [0, 2π/hd)

and Hh := L2(Θh;C). The DTFT Fh : Gh → Hh is given by

(Fhf)(ϑ) :=
vol

1/2
h

(2π)d/2

∑
x∈Ωh

f(x)e−i〈ϑ,x〉 .

This is an isometry and its inverse is given by(
F−1

h f̂
)

(x) =
vol

1/2
h

(2π)d/2

∫
Θh

f̂(ϑ) ei〈ϑ,x〉 dϑ .(1)

In the case that A is a constant stencil operator, define its Fourier representation
Â ∈ L(Hh;Hh) by

(2) ÂFh = FhA .

It can be easily seen that

Âf̂ = â · f̂ , where(3)

â(ϑ) =
∑
y∈Ωh

s(y) · ei〈ϑ,y〉 .(4)

We say that Â is a multiplication operator with (scalar) symbol â. If the Fourier

representation Â of A ∈ L(Gh;Gh) has a symbol â, we call â the Fourier symbol of A.
Note that not every operator has a Fourier symbol.

To simplify the notation we will not distinguish notationally between the Fourier
representation Â of A and its Fourier symbol in the following. It should be clear from
the context when we refer to the Fourier representation and when we refer to the
Fourier symbol. Note that every operator A ∈ L(Hh;Hh) has a Fourier representation
but not necessarily a Fourier symbol.

In many applications simple iterative methods yield slowly varying error functions,
and a slowly varying error can be represented on a coarser grid. Multigrid methods
accelerate this iterative process by using the fact that solving on a coarse grid is
cheaper then on a fine one. The representation Âf̂ = â · f̂ allows us to analyze an
operator in terms of slowly varying and oscillatory functions, as follows. The formula
for the inverse DTFT (1) shows that each function in Gh can be represented by a
combination of ei〈ϑ,x〉. We have that

(5)
(
ei〈ϑ,x〉 = 1 for all x ∈ Ωh

)
iff ϑ ∈ 2πZd/h .

In other words, the term ei〈ϑ,x〉 is constant if all ϑi (i = 1, . . . , d) are a multiple of
2π/hi. Thus if all ϑi (i = 1, . . . , d) are close to a multiple of 2π/hi, the term ei〈ϑ,x〉

is close to the constant function and hence slowly varying (on Ωh). Those values for
ϑ are called the low frequencies, the other ones the high frequencies. This distinction
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Fig. 1. Real part of the one-dimensional (1D) wave functions eiθh. We choose θ = 0.95 · 2π
h

(left), which is close to a multiple of 2π
h

. Therefore θ is a low frequency and we see a slowly varying

function. Furthermore, we choose θ = 0.45 · 2π
h

(right), which is far away from all multiples of 2π
h

.
Therefore θ is a high frequency and we see an oscillatory function.

is illustrated in Figure 1. The function f̂(ϑ) characterizes the size of the frequencies.

Hence if f̂ is large on the low frequencies and small otherwise, we expect the function
f := F−1

h f̂ to be slowly varying. This means that the Fourier symbol of an operator
shows the difference in its action on slowly varying and on oscillatory functions.

The definition for low and high frequencies that we gave here is vague. To make
a precise definition, however, it is necessary to take the coarse grid that should be
used into account. For a discussion of the definition of low and high frequencies with
respect to different coarse grids see, e.g., [25, 26]. Furthermore, we give a precise
definition for one case in section 5.3.

Another very useful feature of the representation is that we can compute the
spectral radius and norms, easily.

Lemma 2.2. If a ∈ L∞(Θh) is the symbol of the multiplication operator A, then

r(A) = ‖A‖ = ess sup
ϑ
|a(ϑ)| .

Proof. This is a direct consequence of the fact that the spectrum of A is the
essential range of a [21, Chapter 12].

Due to Parseval’s identity the DTFT is an isometric map and therefore we obtain
the following.

Corollary 2.3. If Â is the Fourier symbol of the operator A, then

r(A) = ‖A‖ = ess sup
ϑ
|Â(ϑ)| .

Note that if E is the error operator of an iterative method, then ‖E‖ is the worst
case error reduction factor for one iteration. And since ρ(E) = limn→∞ ‖En‖1/n the
spectral radius gives us the asymptotic error reduction factor per iteration.

3. The analysis of periodic stencil operators I. In the previous section we
saw that if we can approximate our operator of interest by a constant stencil we can
analyze it by inspecting its Fourier symbol. However, this assumption can be too
restrictive. In this section we present a similar analysis for the case that the operator
is approximated by a periodic stencil. If we split the frequency function into slices
corresponding to harmonic frequencies and put these slices into a vector, the periodic
stencil operator can be represented by a matrix symbol. In this section we give a
high-level description and delay the details to section 6.

We start by generalizing our notion of multiplication operators. We denote
L∞n×m(Θh) as the set of matrices of functions in L∞(Θh), i.e., a ∈ L∞n×m(Θh) iff

aij ∈ L∞(Θh) for i ∈ In, j ∈ Im .

This matrix can act on a vector of L2(Θh) functions by the following definition.
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Definition 3.1. Let a ∈ L∞n×m(Θh). Then a is the matrix symbol of the (ma-
trix) multiplication operator A : L2(Θh)m → L2(Θh)n given by

(
Af
)
i

:=

m∑
j=1

aijfj for all i ∈ In .

Basically this is a matrix vector multiplication where the entries of the matrix
and the vector are functions and the multiplication is replaced by pointwise function
multiplication. Note that we also allow for multi-indices. The product of two matrices
of functions is defined as the usual matrix-matrix product. In the following we will
use the same letter for the operator and its symbol.

For the definition of the harmonic frequencies let ϑ ∈ Θh. Then ϑ̃ ∈ Θh is an
n-harmonic of ϑ if

ei〈ϑ,x〉 = ei〈ϑ̃,x〉 for all x ∈ Ωh·n ,

in other words, if the wave functions of the frequencies coincide on the subset Ωh·n of
Ωh. This is the case iff

(6) ϑ− ϑ̃ ∈ 2πZd/(h · n)

due to (5) and the exponentiation identity. Note that (6) is an equivalence-relation.
It is easy to see that for every equivalence class [ϑ] we find a unique value ϑ′ ∈ Θh·n
such that

(7) [ϑ] =
{
ϑ′ + sh,nj : j ∈ In

}
, where sh,nj := 2π(j− 1)/(h · n) .

We call ϑ′ the base frequency. In unambiguous situations we will drop h and n from
s. All in all we have the disjoint union

(8) Θh =
⋃̇

ϑ∈Θh·n

[ϑ] .

The definition of the block Fourier symbol of an operator requires the frequency
splitting operator Rn : Hh → (Hh·n)n given by

(Rnjû) (ϑ) = û
(
ϑ+ sh,nj

)
for ϑ ∈ Θh·n .

This operator produces a vector of functions such that (Rnû)(ϑ) is a vector whose
entries are the values of û at all harmonics of ϑ. In other words the operator Rn groups
the harmonic frequencies together. Figure 2 shows an example of the application of
this operator. Note that due to the disjoint union (8) Rn is bijective. If we define the
scalar product and norm on Hn

h·n by

〈f, g〉 :=

n∑
k=1

〈fk, gk〉 and ‖f‖ := 〈f, f〉1/2 for f, g ∈ Hn
h·n

it is easy to check that the mapping Rn is an isometry.
Now, analogously to Fourier symbol of operators we have the following.

Definition 3.2 (block Fourier symbol). Let 0 < h ∈ Rd, 0 < m,n ∈ Nd, and

A : Gh/n → Gh/m. If the operator Â : Fn
h → Fm

h given by

ÂRnFh/n = RmFh/mA

has a matrix symbol â ∈ L∞m×n(Θh) we call â the block Fourier symbol of A.
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Rn

Fig. 2. The action of frequency splitting operator Rn applied to a 1D function for n = 4. The
gray line marks a set of n-harmonics. After application of the operator the harmonic frequencies
all belong to the same value of the argument θ but to different components of the vector.

In other words, if for f = Au we have the DTFTs f̂ and û of f and u, respectively,
then

(9) f̂
(
ϑ+ s

h/m,m
k

)
=
∑
j

Âk,j(ϑ) · û
(
ϑ+ s

h/n,n
j

)
for ϑ ∈ Θh .

Thus in contrast to the constant stencil case where each output frequency just depends
on one input frequency (3), one output frequency depends on the n-harmonics of its
frequency.

Note that we require that the operator A maps from a grid function with step
size h/n to one with step size h/m. This requirement means that the grids have to
be refinements of one common grid.

As a first example for operators with block symbols consider the following lemma,
which can be proven by a simple calculation.

Lemma 3.3. If A has a (nonblock) symbol Â, then for any block size n the operator

(RnÂR
−1
n ) is a matrix multiplication operator with(

RnÂR
−1
n

)
kj

(ϑ) = δkjÂ(ϑ+ sk) .

Thus (RnÂR
−1
n ) is the block symbol of A.

It states that every operator with (nonblock) symbol Â has a block symbol Â�.

This Â�(ϑ) is a block diagonal matrix (a.e.); cf. the construction illustrated in Fig-
ure 3.

As already mentioned in the introduction, periodic stencil operators have block
symbols. These operators are defined as follows.

Definition 3.4 (periodic stencil operator). Let 0 < n ∈ Nd be given. If A is
given by a stencil {sx}x∈Ωh

and

sx = sx+k·(h·n) for all x ∈ Ωh, k ∈ Zd ,

then A is called a periodic stencil operator and {sx}x∈Ωh
a periodic stencil and n its

block size.

Thus a periodic stencil with period n is defined by n1n2 · · ·nd distinct functions
in Gh. After this preparation we can formulate the main result of this section which
will be proven in section 6.
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Â Â�

Fig. 3. Comparison of a 1D symbol Â and the block symbol Â�, which represent the same

operator. The block symbol Â� acts on Rnû in the same way as Â acts on û.

Theorem 3.5. Let A ∈ L(Gh;Gh) be a block periodic stencil operator with stencil
ax ∈ Gh and period n. Let A(k) be the (constant) stencil operator corresponding to
the stencil (a(k))x := ak·h (for all x ∈ Ωh). Then A has a block Fourier symbol

Â ∈ L∞n×n(Θh·n) with

Â = F ∗G , where Gkj(ϑ) = FkjÂ
(k)(ϑ+ sj) ,

and F ∈ Cn×n is the Fourier matrix, i.e.,

Fjk := 1

vol
1/2
n

ei2π〈k/n,j〉 for k, j ∈ In .

The representation as a matrix symbol gives us the benefit of easy computation
of the spectral radius and operator norm. Thus we get the worst case and asymptotic
error reduction factors, analogously to the previous section.

Theorem 3.6. Let A ∈ L(Gh;Gh) with Fourier symbol Â. Then

r(A) = ess sup
ϑ∈Θh

r(Â(ϑ)) and ‖A‖ = ess sup
ϑ∈Θh

‖Â(ϑ)‖ .

The proof of Theorem 3.6 can be found in Appendix A.

4. Interpretation and visualization of block symbols. For now, we can
compute the norm and spectral radius of a matrix multiplication operator and there-
fore for a block stencil operator. However, in the case of scalar symbols we were able
to extract further information from the symbol. If Â is a scalar symbol, then Â(ϑ)
is a scalar. This scalar provides a direct relation between one input frequency and
one output frequency. The input frequency is multiplied by the scalar to obtain the
corresponding output frequency, as can be seen in (3). This becomes handy if, e.g., a

smoothing error operator E is analyzed. If Ê(ϑ) is small for high frequencies ϑ, then
the norm of highly varying inputs will be substantially reduced and the output will
consist mainly of low frequencies. Thus this answers two questions at once: First,
how does a dominating frequency of the input influence the norm of the output? Sec-
ond, which frequencies dominate the output? In the case where Â is a block symbol
the relation is not as obvious. We only have that Â(ϑ) is a matrix that relates the
m-harmonics of ϑ of the input the n-harmonics of the output.
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For d ≤ 3 the scalar symbols Â ∈ L∞(Θh) can be visualized, e.g., by a contour or
isosurface plots. If we have a block symbol in L∞n×m(Θh) we have voln ·volm functions
from L∞(Θh). As this grows quickly, plotting every single function is not feasible. In
this section we discuss how to reduce a block symbol to a scalar function to obtain
the same pieces of information as in the scalar case. Unlike in the scalar case, two
different transformations are needed. The choice of the transformation depends on
whether the influence of certain frequencies on the norm are to be obtained or the
dominating frequencies in the output.

4.1. Frequency damping. For a moment, consider a matrix A ∈ Cm×n and a
vector x ∈ Cn. In order to quantify the influence of a dominating component i in the
vector x on the norm of the output we write x =

∑
i ξiei, where ei is the ith unit

vector. Then Ax =
∑
i ξi(Aei) and thus

‖Ax‖ ≤
∑
i

|ξi| · ‖Aei‖ .

Consequently if |ξj | � |ξi| for all i 6= j, then

‖Ax‖ ≈ ‖Aei‖ .

Therefore the term ‖Aei‖ gives us an estimate on how strongly the ith component
influences the result. Note that Aei is the ith column of A. Thus we compute the
vector containing the norms of the columns of A, i.e.,

cn(A)j =

∑
k

|akj |2
1/2

.

By this we have a vector which contains in the ith component a measure for the
influence of the ith component in x on the result of Ax.

Analogously we can define for a block symbol Â ∈ L∞m×n(Θh) the function

cn(Â)j :=

∑
k

|Âkj|2
1/2

.

Recall that the matrix Â(ϑ) relates the n-harmonics of the input to the m-harmonics
(cf. (9)). If we consider the vector û ∈ Hn

h, then by definition of Rn the entry ûj(ϑ)
corresponds to the frequency ϑ+ sj (recall the definition sj from (7)). Thus function

cn(Â)j(ϑ) is the influence of the frequency ϑ+ sj on the result. And therefore

R−1
m cn(Â)

gives the frequency function that describes how every frequency influences the result.
We refer to this function as the frequency damping of the operator. It can be visualized
easily.

4.2. Frequency emission. Again, let us consider a matrix A ∈ Cm×n. Assume
we have a normalized input vector x ∈ Cn. Consider the question of how large the ith
component of |Ax| can be for all normalized vectors x. That is, we want to determine

max
‖x‖=1

|〈ei, Ax〉| = max
‖x‖=1

|〈A∗ei,x〉| ≤ max
‖x‖=1

‖A∗ei‖ · ‖x‖ = ‖A∗ei‖ .



FOURIER ANALYSIS OF PERIODIC STENCILS IN MULTIGRID A1651

We define rn(A)i := ‖A∗ei‖, which is the norm of the ith row of A, i.e.,

rn(A)i :=

∑
j

|aij |2


1/2

.

Analogously for a block symbol Â ∈ Lm×n we define

rn(Â)i :=

∑
i

|Âij|2
1/2

.

Like in the previous section the entry rn(Â)k belongs to the output frequency f̂(ϑ+sk).
Hence to get a function which assigns every ϑ its worst case value for a normalized
input, we need to compute

R−1
n rn(Â) .

We call this function the frequency emission of the operator.

5. Applications. In this section we use Theorem 3.5 to analyze a multigrid
method for a PDE with jumping coefficients, block smoothers, and block smoothers
in combination with aggressive coarsening.

5.1. Jumping coefficients. When analyzing a multigrid method for solving a
PDE it is usually assumed that the coefficients of the differential operator are almost
locally constant. Hence in the discretization the stencils will be almost constant
between neighboring grid points. Thus the local behavior of a multigrid method can
be analyzed by considering constant stencils. However, if the operator has a jump
in the coefficients this assumption is not feasible. In this section we illustrate how
discretizing jumping coefficient operators can be formulated using periodic stencils
and thus can be analyzed in terms of Theorem 3.5.

We consider the PDE

−∇ · (b∇u) = f in Ω ,

where 0 < b : Ω → R. Usually Ω will be a suitable domain, i.e., Ω ⊆ R2 would be
Lipschitz, and u has to fulfill some boundary conditions. However, since we want to
perform an LFA we neglect the domain and the boundary conditions. Furthermore,
in this section we use the definitions

nw := h ·
−1
−1

 , n := h ·
 0
−1

 , ne := h ·
 1
−1

 ,

w := h ·
−1

0

 , c := h ·
 0

0

 , e := h ·
 1

0

 ,

sw := h ·
−1

1

 , n := h ·
 0

1

 , se := h ·
 1

1

 .

We discretize the operator ∇ · (b∇) by cell-centered finite volumes, using regular,
rectangular control volumes. We assume that b is discontinuous, but only at the
boundary of the control volumes, and that h1 = h2. In this case

ax(y) =


− 2

volh
· b(x+y)b(x)
b(x+y)+b(x) if y ∈ {w, e, n, s} ,

−(ax(w) + ax(e) + ax(n) + ax(s)) if y = c ,

0 otherwise
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Fig. 4. The coefficient pattern of the jumping coefficient problem. White: b = 1. Gray: b = 106.
Cross: Control volume center.

is the stencil of a reasonable discretization Ah : Gh → Gh [25, Chapter 7.7]. We
are interested in the case when there is one jump in the domain. However, as LFA
analyzes local behavior, this should have similar results as in the case where the jumps
are far apart. Thus b is chosen to be periodic with period p = n · h and

b(x) = 1 for all 0 ≤ x1 + (h1/2) < p1/2 ,

b(x) = 106 for all p1/2 ≤ x1 + (h1/2) < p1 ,

which is sketched in Figure 4. Then s is a periodic stencil with period p.
Our first investigation concerns the question of whether the damped Jacobi method

[22] is a suitable smoother for this problem. Its error propagation operator is

EJ := I − ωD−1A ,

where dx(y) := s(y)δxy is the stencil of D. Thus D is also given by a periodic stencil.
By using the fact that Fh is an isomorphism the symbol of EJ is given by

ÊJ = Î − ωD̂−1Â .

Figure 5 is a plot of rn(ÊJ) for the case ω = 0.8. The values of this function which
are close to one are located in the corners of the plot. Thus the low frequencies
are dominating in the output of ÊJ , and therefore the Jacobi method is a suitable
smoother for this problem.

Now, to construct an efficient two-grid method we have to construct a coarse grid
correction. And for that we have to pick a coarse grid step size H, an interpolation
P : GH → Gh, a restriction R : Gh → GH , and a coarse grid approximation AH : GH →
GH . The two-grid method has an error operator that is given by [7, 25, 26, 13]

(10) E := EJ
(
I − PA−1

H RAh
)
EJ .

As we have seen in Figure 5 the Jacobi method produces a smooth error. A
smooth error can be well approximated by linear interpolation from a coarse set of
degrees of freedom. Thus we choose P as linear interpolation with full coarsening
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Fig. 5. The frequency emission rn(ÊJ ) with ω = 0.8 for the jumping coefficient problem with
period p = (4, 4)T .
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Fig. 6. Frequency damping of the linear (left) and adaptive interpolation (right) coarse grid
correction for the jumping coefficient problem.

Table 1
Comparison of the linear interpolation and adaptive two-grid method.

Linear interpolation Adaptive

r(ETG) 0.46 0.36
‖ETG‖ 0.91 0.53

(H := 2h) and R := P ∗ [5]. For our discretization we required that the jump in the
coefficients should be on the boundary of two control volumes. As this can be violated
on coarser grids a rediscretization coarse grid correction is not feasible. Therefore,
the Galerkin coarse grid approximation AH := RAhP is used.

The block symbol ÊTG of the whole two-grid method (10) can be computed

[26, 24]. In Figure 6 we plot rn(Ê). We see that the coarse grid correction with linear
interpolation amplifies some high frequencies substantially. Thus, as motivated, the
smooth error is interpolated well. However, nonsmooth error results in amplification
of the error. And since during the first few V-cycles the error is nonsmooth, this has
a bad effect on the convergence rate.

This behavior can also be seen in Table 1. For the linear interpolation the norm
of the error operator is close to one, while the spectral radius is much smaller. Hence
the method works well in the asymptotic regime but can be bad for the first few
iterations.
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Thus we take a look at the operator dependent interpolation as described in [1,
8, 25]. Let u ∈ Gh be the function on the coarse grid and v ∈ Gh the result of the
interpolation. For coarse grid points we have

v(x) = u(x) .

For grid points on a horizontal line between two coarse grid points, we compute

v(x) = αw · u(x + w) + αe · u(x + e), where

αw =
ax(nw) + ax(w) + ax(sw)

ax(n) + ax(c) + ax(s)
and αe =

ax(ne) + ax(e) + ax(se)

ax(n) + ax(c) + ax(s)
.

Analogously for grid points on a vertical line

v(x) = αn · u(x + n) + αs · u(x + s), where

αn =
ax(nw) + ax(n) + ax(ne)

ax(w) + ax(c) + ax(e)
and αs =

ax(sw) + ax(s) + ax(se)

ax(w) + ax(c) + ax(e)
.

For the interpolation of the points in the center of four coarse grid points, we use the
already interpolated points, by

v(x) = − 1
ax(c) ·

(
ax(e) · v(x + e) + ax(ne) · v(x + ne) + ax(n) · v(x + n)

+ ax(nw) · v(x + nw) + ax(w) · v(x + w) + ax(sw) · v(x + s)

+ ax(s) · v(x + s) + ax(se) · v(x + se)
)
.

Figure 6 illustrates that the adaptive coarse grid correction performs much better than
the one with linear interpolation. The results of the two-grid methods are shown in
Table 1. The adaptive method has a smaller spectral radius. However, the norm of
the two-grid operator is substantially reduced for the adaptive method.

As LFA considers a simplified problem we want to compare our predictions from
Table 1 to a real run of the two-grid method. We choose Ω = (0, 1)× (0, 1), the unit
square, and apply Dirichlet boundary conditions on ∂Ω. The domain is discretized
by a regular 33 × 33 grid. Furthermore we choose b(x) in the following way. In the
center of the domain we let b(x) alternate in the x1 direction between 1 and 106 11
times. The value of b(x) in this area changes every two control volumes. Thus, in the
center of the domain the coefficient b consists of 11 strips of width 2h. For this case we
compute the spectral radius of the adaptive two-grid method with Jacobi (ω = 0.8)
and obtain ρ(Ereal

TG ) = 0.36, which is in perfect agreement with our prediction.
As mentioned earlier we observed that the number of jumps seems not to influence

the convergence rate. Thus run the same experiment again with

b(x) =

{
106 if x1 < 1/2 ,

1 if x1 ≥ 1/2 .

We compute the spectral radius again and obtain ρ(Ereal
TG ) = 0.36, which is still in

perfect agreement with the prediction, even though we have just one jump in the
domain and our analysis assumes that we have infinitely many jumps.
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Remark 5.1. The problem of jumping coefficients has already been analyzed by
the semialgebraic mode analysis (SAMA) [9]. This analysis exploits the tensor struc-
ture of a given problem and applies the Fourier analysis only to one part of the tensor
product. More precisely, SAMA considers an idealized problem where the first part
of the tensor product is considered on a finite grid and the second part of the product
on an infinite grid.

In the case of the jumping coefficient problem, the spatial direction in which
the coefficient jumps is represented on a finite grid and the direction in which the
coefficient stays constant is represented on an infinite grid. This approach, however,
has some drawbacks for this application.

The first drawback is that the SAMA symbols are larger than the symbols ob-
tained by our periodic stencil approach. This is because SAMA uses a finite grid of
high resolution. This high resolution is needed to obtain representative results.

The second drawback is that SAMA requires a tensor structure. In our approach
we could easily analyze the case where the parts of the domain where the coefficient
is large form rectangles, instead of lines. This problem has no tensor structure, thus
the analysis by SAMA is not possible.

5.2. Block Jacobi. This section describes an LFA for the block Jacobi method
[12, 22] (cf. [28]). To define the method, first block Jacobi sweeps are introduced.
Assume that we are given a set S of (nonempty) subsets of I and a weight ω ∈ (0, 2).
A block Jacobi sweep is the mapping from Gh → Gh given by

(11a) x 7→ x+ ω
∑
s∈S

ys ,

where the grid functions ys ∈ span{e` : ` ∈ s} are choosen such that the correction
residuals rs := b−A(x+ ys) fulfill

(11b) rsj = 0 for j ∈ s .

In other words, each ys manipulates the components xi with i ∈ s such that the
(correction) residual of ys vanishes for all those indices.

The block Jacobi method requires that the set S is a partition of the index set,
i.e., I =

⋃
s∈S s, and for s, s′ ∈ S the statement s ∩ s′ 6= ∅ implies s = s′. Then one

iteration of the block Jacobi method is given by a block Jacobi sweep.
In this case a few algebraic transformations yield

(12) x̃ = x+ ωD−1(b−Ax) ,

where D is the restriction of A to the blocks in S. This restriction is defined with the
help of the mapping

bl(i) := s such that i ∈ s, s ∈ S ,

that assigns every element in Ωh the part of the partition that contains this element.
If A is given by a stencil a, the restriction of A to the blocks of S is given by the
stencil d with

(13) dx(y) =

{
ax(y) if (x + y) ∈ b(x) ,

0 otherwise.
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Fig. 7. Computation of the stencil d from a in two dimensions.

For d = 2, n = ( 2
2 ) and the five-point stencil the computation of d is illustrated in

Figure 7. Note that if we restrict D to a finite subset of Ωh it can be (after a suitable
permutation of the indices) represented by a block diagonal matrix.

Until now the partition was arbitrary. In this paper we focus on the case where
the partition is given by regular squares of points in Ωh, in contrast to [29, 25, 26].
More precisely, we choose the partition of Ωh by

(14) Si := (i · n) + Tn , where Tn := {h · k : 0 ≤ k < n} .

We call n the block size. In this case we see that d is a periodic stencil and thus
Theorem 3.5 can be applied.

From the iteration update (12) it follows that the error operator is

E =
(
I − ωD−1A

)
.

As the DTFT is an isomorphism we have that the matrix symbol of the error operator
is

Ê =
(
Î − D̂−1Â

)
.

Recall Lemma 3.3, which stated that every operator with a symbol has a corresponding
block symbol of arbitrary block size. By that we get a block symbol Â of A with block
size n× n and thus the matrix-matrix multiplication with D−1 is possible.

We consider the second order finite difference discretization of Poisson’s equation
∆u = f . In the following we choose ω = 0.8. In Figure 8 we compare the regular
Jacobi method with the 4×4 (block size) Jacobi method. The function has its largest
values in the corners of the plot. Note that in the 4 × 4 method the high values are
much closer to the corners and take less space. Thus the block smoother is effective
for a larger subset of frequencies than the regular one.

We can quantify this behavior by computing smoothing factors. For this analysis,
however, we need a precise definition of low and high frequencies.

The precise definition of low and high frequencies depends on the choice of the
coarse grid. Assume we consider the fine grid Ωh and the coarse grid Ωc·n. In this
case we call c the coarsening range and say that a frequency θ ∈ Θh is low with
respect to the coarsening range c if

ϑi <
π
hci

or (2ci−1)π
hci

≤ ϑi for i = 1, . . . , d .

This definition can be motivated as follows. When we restrict the wave functions
corresponding to the c-harmonics [θ] of some θ to the coarse grid Ωc·h, they all give
the same function. It turns out that every set of c-harmonics contains exactly one
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Fig. 8. Frequency emission of the Jacobi method (left) and the 4×4 block Jacobi method (right)
with ω = 0.8.

Table 2
Smoothing factor for the block Jacobi method with different block sizes and coarsening ranges.

Coarsening Block size

1 2 4 6 8

2 0.60 0.40 0.42 0.42 0.42

4 0.88 0.80 0.66 0.63 0.61

6 0.95 0.90 0.84 0.76 0.73

8 0.97 0.94 0.89 0.86 0.80

low frequency. This low frequency has the minimal distance to the set 2πZd/h from
the frequencies in [θ]. Thus, the corresponding wave function is the smoothest. In
other words, the low frequencies correspond to the smoothest wave functions from all
the wave functions that are not distinguishable on the coarse grid from this particular
wave function. Using this definition we can introduce the smoothing factor.

The smoothing factor of a smoothing method indicates the effectiveness of the
smoother when using the coarse grid Ωc·h. The factor is defined using the filtering
operator Q̂ that is given by the symbol

Q̂(ϑ) :=

{
0 if ϑ is low w.r.t. c,

1 otherwise.

The smoothing factor of a smoother E is given by

sm(E) := r(Q̂Ê) .

As only high frequencies pass the filtering operator Q̂ and an effective smoother re-
duces high frequencies, an effective smoother should have a small smoothing factor.

Table 2 lists the smoothing factor of the block Jacobi method for different block
sizes and coarsening ranges. We observe that the smoothing factor increases when
we increase the coarsening range. On the other hand the smoothing factor decreases
when we increase the block size. Thus, we assume that the block Jacobi method with
large block sizes is a suitable smoother for large coarsening ranges.

5.3. Red-black block Jacobi. The red-black block Jacobi method (RBBJ) is a
modification of the block Jacobi method. Analogously to the block Jacobi method we
start with a partition S of the grid Ωh. Then we partition the blocks in S into the red
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Fig. 9. We consider the block size n =
(
2
2

)
The operator Zc maps the value at black dots to

itself and the others to zero. This pattern is repeated over the whole grid Ωh.

blocks SR and the black blocks SB (i.e., {SR, SB} is a partition of S). Furthermore
define the red points in Ωh as R :=

⋃
s∈SR

s and the black points in Ωh as S :=⋃
s∈SB

s.
Then one iteration of the RBBJ method is given by applying a block Jacobi

sweep (11) w.r.t. SR followed by a block Jacobi sweep w.r.t. SB Thus each sweep
updates only half of the blocks. The difference to the block Jacobi method is that the
correction residuals for the second sweep are computed w.r.t. an intermediate iterate
x.

A few algebraic manipulations yield that one iteration of the RBBJ method ap-
plied to the iterate x yields the new iterate x̃ by

x̄ = x+ ωZRD
−1(b−Ax) ,

x̃ = x̄+ ωZBD
−1(b−Ax̄) ,

where D is the restriction of A to S (see (13)) and

(
Zcu

)
(x) =

{
u(x) if x ∈ c
0 otherwise

for c ∈ {R,B} .

Note that the intermediate variable x̄ is the result of the first Jacobi sweep and x̃ the
result of the second. By combining the two steps the method is given by

E = EBER, where Ec =
(
I − ZcD−1A

)
for c ∈ {R,B} .

This can be formulated in the frequency domain

ÊR =
(
I − ẐRD̂−1A

)
and ÊB =

(
I − ẐBD̂−1A

)
.

We are interested in the case where the partitions are given by

SR := {(k · n) + Tn : k1 + · · ·+ kd even} ,
SB := {(j · n) + Tn : j1 + · · ·+ jd odd} ,

where Tn was defined in (14). In that case Zc is given by a periodic stencil with period
2n (see Figure 9). The stencil of D has period n and therefore also the period 2n;
hence the operators in (5.3) are easily combined. The results for the RBBJ method
applied to the second order finite difference discretization of Poisson’s equation can be
found in Figure 10. Similarly to the block Jacobi method the area of the undamped
components becomes more concentrated in the corners of the plot when the block size
increases.
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Fig. 10. Frequency emission of the red-black Jacobi method (left) and the 4× 4 RBBJ method
(right).

Let us consider a specific example. Set d = 2 and n = (1, 1)T . If we order the
multi-indices in I2n as (0, 0)T , (1, 1)T , (1, 0), and (0, 1) we get

ÊR(ϑ) = 1
2



2− Â(ϑ+s00)

D̂(ϑ+s00)
− Â(ϑ+s11)

D̂(ϑ+s11)
0 0

− Â(ϑ+s00)

D̂(ϑ+s00)
2− Â(ϑ+s11)

D̂(ϑ+s11)
0 0

0 0 2− Â(ϑ+s10)

D̂(ϑ+s10)
− Â(ϑ+s01)

D̂(ϑ+s01)

0 0 − Â(ϑ+s10)

D̂(ϑ+s10)
2− Â(ϑ+s01)

D̂(ϑ+s01)


(15a)

and

ÊB(ϑ) = 1
2



2− Â(ϑ+s00)

D̂(ϑ+s00)

Â(ϑ+s11)

D̂(ϑ+s11)
0 0

Â(ϑ+s00)

D̂(ϑ+s00)
2− Â(ϑ+s11)

D̂(ϑ+s11)
0 0

0 0 2− Â(ϑ+s10)

D̂(ϑ+s10)

Â(ϑ+s01)

D̂(ϑ+s01)

0 0 Â(ϑ+s10)

D̂(ϑ+s10)
2− Â(ϑ+s01)

D̂(ϑ+s01)


.(15b)

This is the well-known LFA for red-black Jacobi [24, 25] illustrating that Theorem 3.5
is a generalization.

Remark 5.2. The block symbols of the red-black Jacobi method (15) are block
diagonal. This fact is a consequence of the ordering of the multi-indices that we chose.
For a general problem, however, we expect the block symbol to be a full matrix. Thus,
in the general case the ordering (0, 0), (1, 0), (0, 1), (1, 1) would be more natural.

Remark 5.3. The analysis in this section can be generalized to multicoloring
(more than two colors) block relaxation schemes. Assume we are given the colors
c1, . . . , cm; then we have to define Zc for all c ∈ C appropriately and

Ê = Êcm · · · Êc2Êc1 .

5.4. Aggressive coarsening. The usual motivation for multigrid (see, e.g., [25,
26, 7]) is that a smooth error can be represented by fewer degrees of freedom than an
oscillatory one. Block smoothers, as could be seen in the previous section, are effective
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Fig. 11. Frequency damping plot of a two-grid method with aggressive 4× 4 coarsening and a
Jacobi smoother (left) and a 4× 4 block Jacobi smoother (right).

Table 3
Spectral radius of the two-grid method with aggressive coarsening and block Jacobi smoothing

as predicted by LFA.

Coarsening Block size

1 2 4 6 8

2 0.36 0.32 0.27 0.26 0.25

4 0.76 0.62 0.38 0.45 0.35

6 0.88 0.79 0.68 0.47 0.58

8 0.92 0.85 0.76 0.74 0.55

in a larger subset of the frequency spectrum than point smoothers, so the smooth error
should be representable by even fewer degrees of freedom. In the following, two-grid
methods are analyzed where the distance between the points on the coarse grid is
increased. To do so, instead of choosing the coarse grid step size H as 2h the step
size H = c · h is chosen. This is called aggressive coarsening.

The error operator of the two-grid method (see, e.g., [25, 26, 7]) is

E := M
(
I − PA−1

H RAh
)
M .

The operator M is the smoothing error operator, while P and R are the interpolation
and restriction.

We choose P as the bilinear interpolation (with respect to the coarsening) and
R = 1

CP
T , where C ∈ R is chosen such that the constant function is transferred

exactly to the coarse grid.
Figure 11 shows the frequency plot of a two-grid method and aggressive coarsening

applied to the second order finite difference discretization of Poisson’s equation. It
demonstrates that the combination of (pointwise) Jacobi and aggressive coarsening
fails to reduce some of the high frequency errors. However, this problem disappears
if we use the block Jacobi method with a sufficiently large block size.

In Tables 3 and 4 the spectral radii of the two-grid error operator (10) for different
coarsenings c and different block sizes of the smoothers are presented. It turns out that
choosing the block size equal to the coarsening ratio can compensate for the growth in
the spectral radius caused by aggressive coarsening to some extend. Furthermore, we
observe that not choosing the block size as a multiple of the coarsening has a negative
effect on the convergence rate.
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Table 4
Spectral radius of the two-grid method with aggressive coarsening and RBBJ smoothing as

predicted by LFA.

Coarsening Block size

1 2 4 6 8

2 0.072 0.033 0.028 0.024 0.015

4 0.51 0.3 0.11 0.18 0.1

6 0.73 0.55 0.39 0.18 0.3

8 0.81 0.67 0.51 0.47 0.25

Table 5
Spectral radius of the two-grid method with aggressive coarsening and block Jacobi smoother

with optimal weight (parentheses).

Coarsening Block size

1 2 4 6 8

2 0.36 (0.80) 0.25 (0.74) 0.22 (0.75) 0.22 (0.75) 0.22 (0.75)

4 0.75 (0.93) 0.61 (0.88) 0.38 (0.79) 0.43 (0.84) 0.35 (0.80)

6 0.88 (0.96) 0.78 (0.94) 0.67 (0.90) 0.47 (0.83) 0.56 (0.87)

8 0.93 (0.98) 0.86 (0.96) 0.77 (0.93) 0.72 (0.92) 0.55 (0.86)

Table 6
Asymptotic convergence rate of the two grid method with aggressive coarsening and block Jacobi

smoothing for a finite grid.

Coarsening Block size

1 2 4 6 8

2 0.34 0.29 0.24 0.24 0.23

4 0.72 0.60 0.34 0.41 0.32

6 0.82 0.75 0.65 0.44 0.54

8 0.84 0.80 0.73 0.71 0.53

We can also use LFA to improve the two-grid method, by computing optimal
weights. Until now we used ω = 0.8; however, this is optimal only for a block size of
one and a coarsening range of two. Table 5 shows the spectral radius of the two-grid
method with block Jacobi smoother and an optimal weight ω, i.e., ω is chosen such
that the spectral radius is minimized. We see that the optimal ω varies between 0.74
and 0.98. The effect is, however, small; i.e., in comparison to Table 3 the spectral
radii change only little.

We now want to evaluate the quality of the LFA prediction. For this purpose we
compute the asymptotic convergence rate of the two-grid method for a finite 96× 96
grid after 10 iterations with periodic boundary conditions. Table 6 shows the results
for the Jacobi smoother with weight ω = 0.8, Table 7 shows the results for the RBBJ
smoother, and Table 8 shows the results for the block Jacobi smoother with optimal
weight. Comparing these tables to the LFA predictions in Tables 3, 4, and 5, we see
that the predictions are quite accurate.
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Table 7
Asymptotic convergence rate of the two-grid method with aggressive coarsening and RBBJ

smoothing for a finite grid.

Coarsening Block size

1 2 4 6 8

2 0.06 0.02 0.01 0.01 0.01

4 0.50 0.30 0.06 0.14 0.05

6 0.71 0.53 0.38 0.14 0.26

8 0.78 0.68 0.54 0.46 0.22

Table 8
Asymptotic convergence rate of the two-grid method with aggressive coarsening and block Jacobi

smoother with optimal weight (parentheses) for a finite grid.

Coarsening Block size

1 2 4 6 8

2 0.34 (0.80) 0.23 (0.74) 0.21 (0.75) 0.20 (0.75) 0.22 (0.75)

4 0.70 (0.93) 0.61 (0.88) 0.34 (0.79) 0.38 (0.84) 0.32 (0.80)

6 0.81 (0.96) 0.74 (0.94) 0.60 (0.90) 0.42 (0.83) 0.49 (0.87)

8 0.87 (0.98) 0.80 (0.96) 0.71 (0.93) 0.67 (0.92) 0.50 (0.86)

6. The analysis of periodic stencil operators II. Continuing section 3 we
will now prove Theorem 3.5. The proof is based on the following observation: Define
the operator Tk : Gh → Gh·n by

(Tku)(x) = u(x + tk) for x ∈ Ωh·n ,

where tk := (k− 1) · h. If A is a periodic stencil operator we then have

(16) TkA = TkA
(k) ,

where A(k) is the constant stencil operator given by stk . That means at the points
(tk + Ωh·n) the result f = Au will behave like it has been computed by a constant
stencil operator. Now Tku is a grid function on Ωh·n. Thus we can apply the DTFT to
Tku to get ĝk := Fh·nTkAu. We will show that due to observation (16) the frequency
function ĝk can be computed from û (instead of u) by the knowledge of the symbol

Â(k) which is easily obtained by (4) as A(k) is a constant stencil operator. In the next

step we show that the functions ĝk can be combined to get f̂ = RnFhAu. Thus in
the end we can compute f̂ from û.

In the following it will be helpful to combine the operators Tk into a single operator
T : Gh → (Gh·n)n by (Tu)k = Tku. The combined operator T will be called the space
splitting operator. On the space (Gh·n)n a scalar product can be defined by

〈f, g〉 :=

n∑
k=1

〈fk, gk〉 .

Then T is an isometry between Gh and (Gh·n)n.

Lemma 6.1. The operator Tk has a block Fourier symbol, i.e.,

Fh·nTk = T̂kRnFh ,
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where

(17) T̂kj = DkkFkj, Dkj(ϑ) = δkj · ei〈ϑ,tk〉 .

Furthermore

(18) Fh·nT = (DF )RnFh ,

where we define for u ∈ Gnh·n the elementwise DTFT Fh·n : Gnh·n → Hn
h·n by the

equation (Fh·nu)j := Fh·nuj .

Proof. The assertion will be proven in two steps. The first step is to show that
the Fourier representation

Fh·nT1 = T̂1RnFh ,

of T1 has a symbol T̂1, where T̂1 is a row vector with

T̂1j(ϑ) = 1

vol
1/2
n

.

In the second step we use this result to prove the general case.
For x ∈ Ωh·n we have(
T1u

)
(x) = u(x) =

vol
1/2
h

(2π)d/2

∫
Θh

û(ϑ) ei〈ϑ,x〉 dϑ .

By using the measurable partition Φ = (sj + Θh·n)
n
j=1 of Θh, i.e., Θh =

⋃̇
s∈SΦs and

Φs is measurable, it follows that

(
T1u

)
(x) =

vol
1/2
h

(2π)d/2

n∑
j=1

∫
Φj

û(ϑ) ei〈ϑ,x〉 dϑ

and a variable substitution leads to

(
T1u

)
(x) =

vol
1/2
h

(2π)d/2

n∑
j=1

∫
Θh·n

û(ϑ+ sj) e
i〈ϑ+sj,x〉 dϑ

= 1

vol
1/2
n

· vol
1/2
h·n

(2π)d/2

n∑
j=1

∫
Θh·n

û(ϑ+ sj) e
i〈ϑ,x〉ei〈sj,x〉 dϑ .

Now ei〈sj,x〉 = 1 for x ∈ Ωh·n (cf. (5)), thus

(
T1u

)
(x) =

vol
1/2
h·n

(2π)d/2

∫
Θh·n

 1

vol
1/2
n

n∑
j=1

Rnjû(ϑ)

 · ei〈ϑ,x〉 dϑ =
(
F−1

h·nT̂1RnFhu
)

(x) .

This completes the first step. Now we can turn to the second step. Consider the
shift operator (Zku)(x) := u(x+ tk). We know that Ẑk(ϑ) = ei〈ϑ,tk〉. Furthermore it
is easy to see that Tk = T1Zk. Hence

Fh·nTk = Fh·nT1Zk = T̂1RnFhZk = T̂1

(
RnẐkR

−1
n

)
RnFh .
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Gh

Gnh·n Hh

Hn
h·n Hn

h·n

T

Rn

Fh

Fh·n

DF

Fig. 12. Commuting diagram of the block discrete-“time” Fourier transform.

And this leads to

T̂kj =
(
T̂1

(
RnẐkR

−1
n

))
j

=

n∑
r=1

T̂1r ·
(
RnẐkR

−1
n

)
rj
.

We have (RnẐkR
−1
n )rj(ϑ) = δrjẐk(ϑ+ sr) = δrje

i〈ϑ+sr,tk〉. Thus

T̂kj =

n∑
r=1

1

vol
1/2
n

· δrjei〈ϑ+sr,tk〉 = 1

vol
1/2
n

ei〈ϑ+sj,tk〉 = ei〈ϑ,tk〉 · 1

vol
1/2
n

ei〈sj,tk〉

= Dkk(ϑ)Fkj .

Equation (18) basically states that the diagram in Figure 12 commutes. And thus
as T , Fh, Fh·n, and Rn are isometries, so is (DF ). We can now prove the main result.

Proof of Theorem 3.5. Let u ∈ Gh. We begin by computing the vector ĝ :=
Fh·nTAu.

We use the definition of the elementwise DTFT and observation (16), i.e., the fact
that a periodic stencil operator looks like a constant stencil operator when multiplied
from the left by Tk, to obtain

ĝk := Fh·nTkAu = Fh·nTkA
(k)u .

We can now use Lemma 6.1 and then Lemma 3.3 to express ĝ in terms of û := RnFhu
by

ĝk = T̂k

(
RnÂ

(k)R−1
n

)
RnFhu = T̂k

(
RnÂ

(k)R−1
n

)
û .

Recall that T̂k is a row vector and (RnÂ
(k)R−1

n ) is a diagonal matrix. Hence,

T̂k(RnÂ
(k)
n R−1

n ) is a row vector with(
T̂k

(
RnÂ

(k)R−1
n

))
j
(ϑ) = Dkk(ϑ) · Fkj · Â(k)(ϑ+ sj) = Dkk(ϑ) ·Gkj(ϑ) ,

where we used (17). Thus

ĝk =
∑
j

Dkk ·Gkj · ûj

and the whole vector ĝ can be computed by ĝ = DGû.
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As we now have a relation between û and ĝ it remains to combine the ĝk to obtain
f̂ := RnFhAu. We do that by using Lemma 6.1 again (cf. Figure 12). From (18) we
know that

f̂ = RnFhAu = (DF )−1Fh·nTAu = F−1D−1ĝ = F−1D−1DGû = F−1Gû .

Thus
RnFhA = (F ∗G)RnFh = ÂRnFh ,

as F is the DFT matrix and therefore unitary.

Appendix A. Matrix multiplication operators. In this appendix we want
to discuss the proof of Theorem 3.6. To our knowledge the theorem and its proof
cannot be found in the literature. This theorem can be seen as a generalization of
Corollary 2.3. For its proof we used the essential range of a function in L∞(X;C).
Analogously, the essential union of the pointwise spectra σ(a(x)) for a ∈ L∞n×m(X;C)
can be defined [17].

In this section let µ be the Lebesgue measure and X := Θh. (However, (X,Σ, µ)
can be any σ-finite measure space.) The essential union of the pointwise computed
spectra σ(a(x)) is now given by

ess-
⋃
x∈X

σ(a(x)) :=
⋂
b∈[a]

⋃
x∈X

σ(b(x)) ,

where [a] is the equivalence class of functions that are almost everywhere equal to a.
It can be shown that this is equivalent to
(19)

ess-
⋃
x∈X

σ(a(x)) = {z ∈ C : for all ε > 0 : µ({x ∈ X : σ(a(x)) ∩ Uε(z) 6= ∅} > 0} .

Proposition A.1. Let A : L2(X)n → L2(X)n be a matrix multiplication opera-
tor with nonempty resolvent set ρ(A) and matrix symbol a. Then

σ(A) = ess-
⋃
x∈X

σ(a(x)) .

Proof. See [17] for the proof.

So the spectrum of the matrix multiplication operator is the essential union of
the pointwise spectra. This result can be used to show the following result for the
spectral radius.

Lemma A.2. Let A be as defined in Proposition A.1. The spectral radius r(A) of
A is the essential supremum of the pointwise computed spectral radii of a(ϑ), i.e.,

r(A) = ess sup
ϑ∈X

r(a(ϑ)) .

Proof. We set

(20) C := ess sup
ϑ∈X

r(a(ϑ) = inf{α > 0 : µ({x ∈ X : r(a(x)) > α}) = 0} .

It is known that
r(A) = max

λ∈σ(A)
|λ| .

Thus we can prove the assertion by showing that
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(i) for every ε′ > 0 and all |λ| ≥ C + ε′ we have λ ∈ ρ(A),
(ii) for every ε′ > 0 there exists λ ∈ σ(A) with |λ| ≥ C − ε′.

To show (i) we choose λ ∈ C such that |λ| ≥ C + ε′. Then if we can find ε > 0 such
that

(21) µ({x ∈ X : σ(a(x)) ∩ Uε(λ) 6= ∅}) = 0

the assertion (i) is proven due to Proposition A.1 and (19). If the set {x ∈ X :
σ(a(x))∩Uε(λ) 6= ∅} is empty, then its measure is clearly zero ((21) holds). Thus we
consider the case where this set is not empty. In this case we can choose x0 ∈ X such
that σ(a(x0)) ∩ Uε(λ) 6= ∅. And thus we can pick λ̃ ∈ σ(a(x0)) ∩ Uε(λ). Then

|λ̃| = |λ− (λ− λ̃)| ≥ |λ| − |λ− λ̃| > C + ε′ − ε ,

as λ̃ ∈ Uε(λ). If we choose ε = ε′ we have |λ̃| > C. Recall that we choose λ̃ to be
an eigenvalue of the matrix a(x0). Thus we know that the spectral radius r(a(x0))
fulfills

r(a(x0)) ≥ |λ̃| > C .

So as x0 was an arbitrary element from σ(a(x0)) ∩ Uε(λ) we have shown that

{x ∈ X : σ(a(x)) ∩ Uε(λ) 6= ∅} ⊆ {x ∈ X : r(a(x)) > C} .

By definition of the essential supremum and the constant C in (20) the measure of
the right-hand side is zero. Thus

µ({x ∈ X : σ(a(x)) ∩ Uε(λ) 6= ∅}) ≤ µ({x ∈ X : r(a(x)) > C}) = 0

for all |λ| > C + ε′. Thus we arrive at (21) and the assertion (i) is established.
We want to prove (ii) by contradiction. Assume that there exists ε′ > 0 such that

|λ| < C − ε′ implies λ ∈ ρ(A). Consider the set {x ∈ X : r(a(x)) > C − ε}. We
want to show that this set has measure zero, which would be a contradiction to the
definition of C in (20). To this extent define the set

M := {λ ∈ C : C − ε′ ≤ |λ| ≤ C} .

Then

{x ∈ X : r(a(x)) > C − ε} ⊆ {x ∈ X : r(a(x)) > C} ∪ {x ∈ X : σ(a(x)) ∩M 6= ∅} .

The first set on the right-hand size has zero measure due to the definition of C in (20).
Thus it remains to show that the second set also has zero measure. By the definition
of the essential union of the pointwise spectra (19) we have that for every λ ∈ ρ(A)
there exists ε(λ) > 0 such that

(22) µ({x ∈ X : σ(a(x)) ∩ Uε(λ)(λ) 6= ∅}) = 0 .

We have that M ⊆ (
⋃
λ∈M Uε(λ)(λ)). Thus we have covered the compact set M by a

family of open sets. By that we have finitely many λ1, . . . , λm ∈M such that

M ⊆
m⋃
i=1

Uε(λi)(λi) .
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This yields

{x ∈ X : σ(a(x)) ∩M 6= 0} ⊆
m⋃
i=1

{x ∈ X : σ(a(x)) ∩ Uε(λi)(λi) 6= ∅} ,

and as the sets on the right-hand side all have zero measure due to (22) the assertion
(ii) is proven.

With that we can complete the final proof of this section.

Proof of Theorem 3.6. We have

r(L) = ess sup
ϑ∈Θh·n

r(L̂(ϑ))

by Lemma A.2. Thus

‖L‖2 = ‖L∗L‖ = r(L∗L) = ess sup
ϑ∈Θh·n

r(L̂(ϑ)∗L̂(ϑ)) .
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